

mRNA Vaccines Beyond COVID-19: Emerging Therapeutic **Frontiers**

Walid Theib Mohammad Yousif and Ahmad Maher Ibrahim Al Sayeh 1

 $^{
m 1}$ Department of Nursing, Princess Aisha Bint Al Hussein College for Nursing and Health Sciences, Al-Hussein Bin Talal University, Maan 71111,

REVIEW ARTICLE

Received: 25.08.2024 **Revised:** 28.09.2024

DOI: 10.57238/tpb.2024.153196.1020 Accepted: 12.10.2024

ABSTRACT

The rapid development and deployment of mRNA vaccines during the COVID-19 pandemic marked a pivotal moment in medical science, showcasing the technologys potential beyond its initial applications. As researchers delve deeper into the versatility of mRNA platforms, the prospect of broadening their use to address a myriad of health challenges is becoming increasingly plausible. This exploration is not merely a theoretical pursuit; it encompasses a wide spectrum of infectious diseases and personalized medicine, including oncology and chronic infections such as HIV and tuberculosis. The inherent adaptability of mRNA technology, characterized by its quick customization in response to emerging pathogens, positions it as a front-line defense in future pandemics and a powerful tool for customized cancer immunotherapy. As such, the trajectory of mRNA vaccine development holds promising implications for transforming therapeutic strategies across various medical domains.

Keywords: mRNA vaccine technology, Emerging infectious diseases, Pandemic preparedness, Chronic infections, Global health resilience.

Introduction

¶не advent of mRNA technology marks a pivotal moment in vaccine development, significantly accelerated by its success against COVID-19, which has set the stage for broader applications. Historically perceived with skepticism, mRNA vaccines have demonstrated unparalleled adaptability and scalability, making them ideal candidates not just for infectious diseases, but also for complex conditions such as cancer. The rationale for expanding these applications is underscored by their rapid development timelines, which can be particularly advantageous in responding to emerging health threats and neglected tropical diseases.

As noted in the literature, mRNA vaccines readily lend themselves to personalization, allowing for the crafting of individualized therapies that target specific tumor antigens, thus enhancing precision medicine. This versatility and speed in development create not only new therapeutic avenues but also heighten the potential for mRNA technology to revolutionize various medical landscapes, addressing both infectious and oncological challenges [1–4].

1.1 Historical overview of mRNA vaccine develop-

The trajectory of mRNA vaccine development can be traced back to fundamental research in molecular biology, where the concept of translating genetic information into protein synthesis laid the groundwork for subsequent innovations. Early endeavors to harness mRNA for therapeutic purposes faced significant hurdles, including stability and delivery challenges. These barriers were progressively surmounted through advances such as lipid nanoparticle (LNP) technology, which played a pivotal role in encapsulating and delivering mRNA effectively to target cells. The unprecedented global collaboration spurred by the COVID-19 pandemic, wherein genomic sequences of SARS-CoV-2 were shared openly, marked a significant turning point; this led to vaccine candidates being developed and brought to market in record time [5].

^{*}Corresponding author name: Walid Theib Mohammad, Email:9901002@ahu.edu.jo

As the landscape evolves, exploring the potential of mRNA vaccines beyond infectious diseases, including therapeutic applications in oncology and personalized medicine, represents a promising frontier [6].

1.2 Rationale for expanding mRNA vaccine applications

The rapid advancements in mRNA vaccine technology, highlighted by their unprecedented success during the COVID-19 pandemic, underscore the significant rationale for broadening their applications beyond infectious diseases. One of the foremost advantages of mRNA vaccines lies in their remarkable adaptability; novel mRNA formulations can be rapidly designed to target diverse pathogens and cell types, thus enhancing responses against emerging infectious threats and chronic illnesses alike. Additionally, the scalability of mRNA manufacturing facilitates accelerated production timelines, enabling timely vaccinations during public health emergencies. Moreover, recent innovations have illuminated the potential of mRNA platforms in oncology, presenting new avenues for personalized cancer immunotherapies that harness patient-specific tumor antigens. As research continues to evolve, it is essential to address inherent challenges, particularly concerning stability and immune tolerance, thereby ensuring that mRNA technology can achieve its full therapeutic potential across various medical disciplines [7,8].

1.3 Objectives of the research essay

The exploration of mRNA vaccines beyond their initial application in COVID-19 reveals significant objectives that extend into myriad therapeutic domains, emphasizing a strategic shift in healthcare innovation. A primary aim of this research essay is to elucidate the potential of mRNA technology in treating non-communicable diseases, including autoimmune disorders, which have traditionally been challenging to address with conventional therapies. Additionally, the essay seeks to critically analyze the regulatory and policy frameworks that govern global access to these vaccines, particularly in low-resource settings where health disparities are pronounced. By addressing manufacturing challenges and cost barriers, the research anticipates fostering equitable distribution models that can enhance public health outcomes. Ultimately, this inquiry aspires to encourage interdisciplinary collaboration, aiming to leverage mRNA's adaptability to stimulate advancements across various medical fields while ensuring that emerging technologies are accessible to all populations [9, 10].

2 mRNA Vaccines for Infectious Diseases

The adaptability of mRNA vaccines presents significant promise in the realm of infectious diseases, particularly in addressing both emerging pathogens and chronic infections. As evidenced during the COVID-19 pandemic, the rapid development timelines enabled by mRNA technology allow for swift responses to new virulent strains, such as SARS-CoV-2 and other viral threats [11]. Policy-makers and researchers alike are increasingly recognizing mRNA vaccines potential to fortify pandemic preparedness, especially against neglected tropical diseases and prevalent chronic infections like HIV and tuberculosis, for which traditional vaccines have proven challenging to develop [12].

Ongoing clinical trials highlight this shift, aiming to harness mRNAs flexibility to tailor vaccines for specific pathogens while maximizing immunogenicity. The scalability of mRNA platforms not only enhances accessibility but also facilitates a more robust global response to future infectious disease outbreaks, thereby transforming public health strategies worldwide.

2.1 Emerging pathogens: mRNA vaccines in pandemic preparedness

The global landscape of infectious disease preparedness has been irrevocably altered by the advent of mRNA vaccine technology, particularly in the context of emerging pathogens. This innovative platform not only demonstrated unprecedented adaptability during the COVID-19 pandemic but also holds significant promise for combating neglected tropical diseases and other viral threats that may arise in the future. The rapid response capabilities afforded by mRNA vaccines derive from their intrinsic properties of scalability and ease of reprogramming, which are essential for developing targeted vaccines against new pathogens in a fraction of the time required for traditional methods [13].

However, to fully leverage these advantages, a concerted effort must be made to address barriers surrounding equitable access and distribution, especially in low-income countries where the impact of emerging pathogens can be disproportionately severe [14]. Effective international cooperation and investment in technology transfer will be critical in ensuring that mRNA vaccines play a vital role in enhancing global pandemic preparedness (Fig.2) .

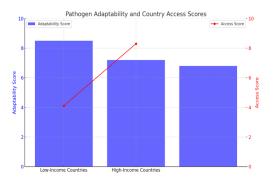


Fig. 1. The chart displays the adaptability scores of different pathogen types alongside the access scores for low-income and high-income countries. The blue bars represent the adaptability scores for emerging pathogens, neglected tropical diseases, and viral threats, while the red line indicates the access scores for low-income and high-income countries. This visualization highlights the contrast between pathogen adaptability and the accessibility of resources in different economic contexts.

2.2 The role of mRNA vaccines in global health initiatives

The emergence of mRNA vaccines has catalyzed significant shifts in global health strategies, particularly in pandemic preparedness and the management of infectious diseases. By enabling rapid adaptability and scalability, mRNA technology positions itself as a cornerstone for future vaccine development, notably in addressing both endemic and emergent pathogens. Initiatives within the ASEAN region highlight the potential of collaborative R&D efforts, as demonstrated by Thailands cultivation of partnerships among public and private sectors, academic institutions, and international organizations to bolster vaccine security and innovation [15]. The COVID-19 pandemic underscored the critical role of international cooperation in mRNA vaccine development, creating a framework for addressing supply-side and demand-side challenges that often stymie vaccine rollout in low-income countries [16]. Thus, mRNA vaccines transcend their initial application, promising not only to revolutionize infectious disease response but also to lay the groundwork for broader therapeutic frontiers in global health initiatives.

3 mRNA Vaccines in Oncology

The advent of mRNA technology marks a transformative shift in cancer treatment modalities, particularly through the development of personalized cancer vaccines tailored to individual tumor profiles. This precision medicine approach hinges on the ability of mRNA vaccines to present specific tumor antigens, thereby eliciting a robust immune response tailored to eradicate cancer cells. Insights from immunological pathways suggest that these tailored therapies can significantly enhance treatment efficacy when

combined with existing modalities such as checkpoint inhibitors, fostering a synergistic effect that overcomes tumor-induced immune suppression [17]. For instance, ongoing clinical trials demonstrate the potential of mRNA vaccines to not only prime the immune system but also to complement traditional therapies, addressing tumors' unique microenvironments and evading their inherent adaptive mechanisms [18]. Thus, mRNA vaccines promise to redefine oncological paradigms by integrating innovative strategies that leverage the body's own defenses against malignancy.

3.1 Personalized cancer vaccines

The potential of personalized cancer vaccines has significantly transformed the landscape of oncology, emerging as a promising strategy for addressing the complexities of tumor-specific immune responses. By harnessing mRNA technology, these vaccines can be tailored to present unique neoantigens derived from an individual's tumor, thereby enhancing the precision of immunotherapy [19]. This approach not only aims to stimulate a robust immune response but also seeks to overcome the limitations of traditional cancer treatments, which often lack specificity and efficacy across diverse patient populations [20]. The resurgence of interest following the COVID-19 pandemic has reinvigorated investment in this area, leading to promising clinical trials that demonstrate early signs of efficacy. As researchers continue to explore optimal patient stratification, target selection, and vaccine formulation, personalized mRNA vaccines may pave the way for more effective and individualized cancer treatment regimens.

3.2 Combination therapies with mRNA vaccines

The evolving landscape of oncology has prompted significant exploration into combination therapies that leverage the unique capabilities of mRNA vaccines. By integrating mRNA vaccines with established modalities such as checkpoint inhibitors, a synergistic effect can be achieved, enhancing overall therapeutic efficacy. This approach capitalizes on the immunogenic potential of mRNA to generate neoantigen-specific immune responses while simultaneously modulating the tumor microenvironment through checkpoint blockade. Preliminary studies indicate that this combinatorial strategy not only promotes stronger antitumor immunity but may also improve patient outcomes in terms of survival and quality of life. Additionally, the innovative use of lipid nanoparticles for mRNA delivery addresses barriers related to stability and targeted action, a crucial factor in optimizing therapeutic effects [21]. As ongoing clinical trials continue to validate these strategies, the integration of mRNA vaccines into multi-modal treatment regimens will likely redefine conventional oncological approaches and open new therapeutic frontiers [22].

3.3 Clinical Trials and Regulatory Pathways for Cancer mRNA Vaccines

The rapid advancement of mRNA vaccines has catalyzed a pivotal shift in clinical oncology, necessitating a comprehensive understanding of the regulatory frameworks guiding their development. As these novel vaccines progress through clinical trials, they must navigate a complex landscape defined by stringent regulations aimed at ensuring efficacy and safety. Recent clinical trials focusing on cancer-specific mRNA vaccines have shown promise, particularly in personalized medicine, where vaccines are tailored to an individuals unique tumor profile to elicit a robust immune response [23]. Regulatory pathways, especially those established by organizations such as the FDA, emphasize the need for rigorous preclinical testing, followed by phased human trials that provide extensive data on immunogenicity and tolerability [24]. This systematic approach is essential to validate the therapeutic potential of mRNA vaccines, ultimately fostering their integration into standard oncological care amidst a landscape increasingly favorable to innovative immunotherapies (Table 1).

4 Advances in mRNA Vaccine Delivery Systems

The evolution of mRNA vaccine technology has underscored the critical importance of effective delivery systems, a factor that directly influences therapeutic efficacy and patient outcomes. Central to this advancement is the use of lipid nanoparticles (LNPs), which have revolutionized mRNA delivery by enhancing both stability and targeted cellular uptake. These nanocarriers effectively mitigate the susceptibility of mRNA to degradation while facilitating its transportation across biological barriers, thereby promoting a robust immune response [25]. Additionally, exploring alternative delivery platforms, including polymer-based carriers and innovative needle-free vaccination methods, presents promising pathways to improve accessibility and patient compliance [26]. Such advancements not only enhance the functionality of mRNA vaccines but also open avenues for addressing diverse medical challenges beyond infectious diseases, including cancer and autoimmune disorders. Consequently, continued research into novel delivery mechanisms remains essential for realizing the full potential of mRNA therapeutics in future clinical applications.

4.1 Lipid nanoparticles (LNPs) in mRNA delivery

The integration of lipid nanoparticles (LNPs) in the delivery systems for mRNA vaccines has markedly transformed the landscape of therapeutic applications beyond COVID-19. The versatility of LNPs allows for the efficient encapsulation of mRNA, significantly enhancing its stability and bioavailability in vivo, thus overcoming the inherent challenges posed by nucleic acid therapies [27]. These nanomaterials facilitate targeted delivery, ensuring that the mRNA reaches its intended cellular destinations, which is critical in applications ranging from personalized cancer vaccines to the treatment of chronic infectious diseases [27]. Furthermore, advances in the physicochemical properties of LNPs, such as surface charge and lipid composition, have been shown to improve their interaction with cellular membranes, leading to increased uptake and subsequent expression of antigens [28]. As research progresses, the optimization of LNP formulations will be essential in maximizing the therapeutic efficacy and safety profiles of mRNA-based interventions across a variety of diseases.

4.2 Alternative delivery platforms

As biomedical research continues to evolve, the exploration of new modalities for delivering mRNA vaccines is becoming increasingly crucial to overcome existing limitations. Alternative delivery platforms, particularly polymer-based carriers, are gaining prominence due to their biocompatibility, tunability, and potential for targeted delivery. These systems can facilitate needle-free administration, offering a less invasive route that enhances patient compliance and broadens access, particularly in lowresource settings. In conjunction with lipid nanoparticles, these novel delivery methods may improve the stability and efficacy of mRNA vaccines, addressing the challenges associated with cold-chain storage and transportation [29]. Furthermore, the integration of innovative delivery techniques aligns with the demand for scalable production processes and well-defined product characterization, essential for the successful deployment of mRNA vaccines beyond infectious diseases, as illustrated by ongoing studies targeting cancer and chronic infections [30]. Overall, advancing alternative delivery platforms is critical in harnessing the full potential of mRNA technology.

Table 1. Clinical trials for cancer mRNA vaccines.

Trial_Name	Indication	Registration_Status	Results	Year_Started	Phase
Trial A	Melanoma	Completed	Promising immune response	2020	Phase 1
Trial B	Breast Cancer	Ongoing	Recruiting participants	2021	Phase 2
Trial C	Prostate Cancer	Completed	Safe and well tolerated	2019	Phase 1
Trial D	Non-Small Cell Lung Cancer	Completed	Significant clinical responses observed	2021	Phase 2
Trial E	Colorectal Cancer	Ongoing	Data collection in progress	2022	Phase 1

4.3 Innovations in vaccine formulation and stability

The burgeoning field of mRNA vaccine technology has catalyzed significant advancements in the formulation and stability of these innovative therapies. One noteworthy innovation involves the optimization of lipid nanoparticles (LNPs), which have emerged as critical carriers that enhance mRNA stability and facilitate efficient delivery. By utilizing LNPs, researchers have significantly improved the pharmacokinetics and biocompatibility of mRNA vaccines, addressing previous challenges related to cold-chain storage and logistical distribution [31]. Additionally, novel formulation strategies have been introduced, including the incorporation of stabilizers and lyophilization techniques that further extend shelf life while maintaining efficacy [32]. These innovations are not only pivotal for the success of current vaccines but also lay the groundwork for expanded applications in diverse therapeutic areas such as oncology and infectious diseases.

Collectively, these developments underscore the potential of advanced formulation strategies to transcend the limitations of traditional vaccine modalities and usher in a new era of immunotherapy.

4.4 Challenges and limitations of current mRNA technologies

Despite the groundbreaking success of mRNA technology in combating COVID-19, several challenges persist that hinder its broader application across diverse therapeutic contexts. A significant limitation lies in the stability and storage requirements of mRNA vaccines, which necessitate stringent cold-chain conditions to maintain efficacy, thereby complicating distribution, especially in resource-limited settings [33]. Furthermore, immune tolerance remains a critical concern, as repeated administration of mRNA vaccines may elicit dampened responses due to adaptive immune mechanisms, necessitating refined strategies to mitigate inflammatory side effects [34]. Additionally, the complexity of mRNA synthesis and the purification processes pose considerable manufacturing bottlenecks, which can impede large-scale production and introduce variability in product quality.

Addressing these multifaceted challenges is essential for the successful integration of mRNA technologies into a wider array of therapeutic applications beyond infectious diseases, including oncology and genetic disorders (Fig.??).

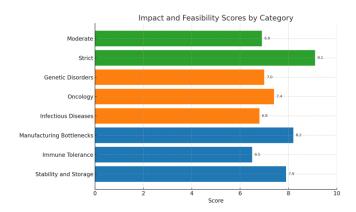


Fig. 2. The chart illustrates the impact and feasibility scores of different challenges, therapeutic applications, and cold chain requirements. Each bar represents a specific category with corresponding scores, providing a clear comparison of the scores across categories. The chart is organized for easy readability, allowing for quick assessment of which factors have higher or lower scores.

5 Conclusion

The advancements in mRNA vaccine technology signify a transformative shift in therapeutic modalities, showcasing unprecedented potential that extends well beyond the immediate context of infectious diseases like COVID-19. Embracing varied applications, including oncology, neurodegenerative conditions, and autoimmune diseases, the versatility of mRNA platforms allows for bespoke therapeutic strategies aligned with patient-specific needs . Furthermore, innovative delivery systems, particularly lipid nanoparticles (LNPs), enhance the stability and efficacy of these vaccines, addressing significant logistical challenges associated with storage and administration. However, to fully realize this potential, concerted interdisciplinary efforts are imperative. Collaborative research initiatives must be fostered to navigate regulatory landscapes, optimize manufacturing processes, and ensure equitable global access to these advanced therapies. Ultimately, the future trajectory of mRNA vaccines hinges on sustained investment in research and a commitment to collaborative efforts aimed at unlocking their comprehensive therapeutic capacities.

Conflict of Interest: The authors declare no conflict of interest.

Financing: The study was performed without external funding.

Ethical consideration: The study was approved by Al-Hussein Bin Talal University, Maan, Jordan.

REFERENCES

- [1] Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Current Opinion in Immunology. 2020;65:14-20. doi:10.1016/j.coi.2020.01.008.
- [2] McKay PF, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature Communications. 2020;11(1):3523. doi:10.1038/s41467-020-17409-9.
- [3] Jackson LA, Anderson EJ, Rouphael NG. An mRNA Vaccine against SARS-CoV-2 Preliminary Report. The New England Journal of Medicine. 2020;383(20):1920-31. doi:10.1056/NEJMoa2022483.
- [4] Zhang NN, Li XF, Deng YQ. A Thermostable mRNA Vaccine against COVID-19. Cell. 2020;182(5):1271-83.e16. doi:10.1016/j.cell.2020.07.024.
- [5] Hsieh CL, Goldsmith JA, Schaub JM. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science. 2020;369(6510):1501-5. doi:10.1126/science.abd0826.
- [6] Buschmann MD, Carrasco MJ, Alameh MG. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines. 2021;9(1):65. doi:10.3390/vaccines9010065.
- [7] Muik A, Wallisch AK, Sänger B. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine—elicited human sera. Science. 2021;371(6534):1152-3. doi:10.1126/science.abg6105.
- [8] Vogel AB, Kanevsky I, Che Y. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 2021;592(7853):283-9. doi:10.1038/s41586-021-03275y.
- [9] Wang Z, Muecksch F, Finkin S. mRNA vaccineelicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592(7855):616-22. doi:10.1038/s41586-021-03324-6.
- [10] Bianchi DW, Kaeser L, Cernich AN. Involving Pregnant Individuals in Clinical Research on COVID-19 Vaccines. JAMA. 2021;325(11):1041-2. doi:10.1001/jama.2021.1865.
- [11] Wouters OJ, Shadlen KC, Salcher-Konrad M. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet. 2021;397(10278):1023-34. doi:10.1016/s0140-6736(21)00306-8.
- [12] Bettini E, Locci M. SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines. 2021;9(2):147. doi:10.3390/vaccines9020147.
- [13] Dagan N, Barda N, Kepten E. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccina-

- tion Setting. The New England Journal of Medicine. 2021;384(15):1412-23. doi:10.1056/NEJMoa2101765.
- [14] Liu Y, Liu J, Johnson BA. Neutralizing Activity of BNT162b2-Elicited Serum. The New England Journal of Medicine. 2021;384(15):1466-8. doi:10.1056/NEJMc2102017.
- [15] de Alwis R, Gan ES. A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice. Molecular Therapy. 2021;29(12):2993-3002. doi:10.1016/j.ymthe.2021.04.001.
- [16] Thompson MG, Burgess JL. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers—Eight U.S. Locations, December 2020–March 2021. Morbidity and Mortality Weekly Report. 2021;70(13):495-500. doi:10.15585/mmwr.mm7013e3.
- [17] Doria-Rose NA, Suthar MS, Makowski M, O'Connell S, McDermott AB, Flach B, et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. The New England Journal of Medicine. 2021;384(23):2259-61. doi:10.1056/NEJMc2103916.
- [18] Schoenmaker L, Witzigmann D, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics. 2021;601:120586. doi:10.1016/j.ijpharm.2021.120586.
- [19] Rauch S, Roth N, Schwendt K, Fotin-Mleczek M, Mueller SO, Petsch B. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virusneutralising antibodies and mediates protection in rodents. npj Vaccines. 2021;6(1):57. doi:10.1038/s41541-021-00311-w.
- [20] Shimabukuro TT, Kim SY, Myers TR, Moro PL, Oduyebo T, Panagiotakopoulos L, et al. Preliminary Findings of mRNA Covid-19 Vaccine Safety in Pregnant Persons. The New England Journal of Medicine. 2021;384(24):2273-82. doi:10.1056/NEJMoa2104983.
- [21] Wu K, Choi A, Koch M, Elbashir S, Ma L, Lee D, et al. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Vaccine. 2021;39(51):7394-400. doi:10.1016/j.vaccine.2021.11.001.
- [22] Kalnin K, Ovacik MA, Lin K, Ovacik M. Immunogenicity and efficacy of mRNA COVID-19 vaccine MRT5500 in preclinical animal models. NPJ Vaccines. 2021;6(1):61. doi:10.1038/s41541-021-00324-5.
- [23] Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from

- symptomatic SARS-CoV-2 infection. Nature Medicine. 2021;27(7):1205-11. doi:10.1038/s41591-021-01377-8.
- [24] Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature. 2021;595(7868):572-7. doi:10.1038/s41586-021-03653-6.
- [25] Frenck RW, Klein NP, Kitchin N, Gurtman A, Lockhart S, Neuzil KM, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. The New England Journal of Medicine. 2021;385(3):239-50. doi:10.1056/NEJMoa2107456.
- [26] Tarke A, Sidney J, Methot N, Yu ED, Zhang Y, Dan JM, et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Reports Medicine. 2021;2(7):100355. doi:10.1016/j.xcrm.2021.100355.
- [27] Gargano JW, Wallace M, Hadler SC, Langley G, Su JR, Myers T, et al. Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices—United States, June 2021. Morbidity and Mortality Weekly Report. 2021;70(27):977-82. doi:10.15585/mmwr.mm7027e2.
- [28] Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276-80. doi:10.1038/s41586-021-03777-9.
- [29] Bernal JL, Andrews N, Gower C, Stowe J, Robertson C, Tessier E, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. The New England Journal of Medicine. 2021;385(7):585-94. doi:10.1056/NEJMoa2108891.
- [30] Pegu A, O'Connell SE, Schmidt SD, O'Dell S, Talana CA, Lai L, et al. Durability of mRNA-1273 vaccine—induced antibodies against SARS-CoV-2 variants. Science. 2021;373(6561):1372-7.
- [31] Gilbert PB, Montefiori DC, McDermott AB, Fong Y, Benkeser D, Deng W, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science. 2022;375(6576):43-50. doi:10.1101/2021.08.09.21261290.
- [32] Puranik A, Lenehan PJ, Silvert E, Niesen MJM, Corchado-Garcia J, O'Horo JC, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv. 2021. doi:10.1101/2021.08.06.21261707.
- [33] Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ, et al. Waning immunity of the BNT162b2 vaccine: A nationwide study from Israel. medRxiv. 2021. doi:10.1101/2021.08.24.21262423.

[34] Self WH. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions—United States, March–August 2021. MMWR Morbidity and mortality weekly report. 2021;70. doi:10.15585/mmwr.mm7038e1.

How to cite this article

Mohammad W.T.; Al Sayeh A.M.I.; mRNA Vaccines Beyond COVID-19: Emerging Therapeutic Frontiers. Trends in Pharmaceutical Biotechnology (TPB). 2024;2(2):30-37. doi: 10.57238/tpb.2024.153196.1020

