Print ISSN: 3006-0516

2024 • Vol. 2, No. 2 • pp. 21-29 Trends in Pharmaceutical Biotechnology (TPB)

Biotechnology of the Diagnosis Urinary Tract Infections: Review

Yousif Sinan Alhamadani 61,*

 $^{
m 1}$ College of Applied Medical Sciences, Al-Muthanna University, Al-Muthanna 66001, Iraq

^{*}Corresponding author name: Yousif Sinan Alhamadani, Email:yousif.sinan@mu.edu.iq

REVIEW A R T I C L E

Received: 02.06.2024 **Revised:** 28.06.2024

Accepted: 10.07.2024 **DOI:** 10.57238/tpb.2024.153196.1017

ABSTRACT

Urinary tract infection is one of the most common diseases in the world caused by bacteria, as it affects both gender and all ages, ranging from acute to chronic. For this reason, the need to evaluate methods for diagnosing infections is very necessary. In this review eight different diagnostic techniques for diagnosing urinary tract infections were discussed, evaluated and compared, and their advantages and disadvantages were identified. And it turned out in general we can rely on diagnosis using nanotechnology, Biosensing, and Endoscope technology Regardless of their disadvantages, they are more efficient and accurate in diagnosis than other technologies.

Keywords: Urinary Tract infection, Microbiology, Diagnosing, Infection

1 Introduction

THE urinary system is one of the most vital organs of the human body, one of its responsibilities is to control the balance of fluid levels in the blood, thus controlling blood pressure and its pH, and maintaining the amounts of salts in the bloodstream [1]. Urinary tract infections can be considered one of the common diseases, even the most common in the world, for both sexes and all ages even children [2], the reason for this is that the urinary tract not only allows urine to exit, but also germs can enter through it in the opposite direction, female are more susceptible to urinary tract infections, accounting for approximately 81% of reported infections [3] The reason for this is due to the nature of the anatomical structure of women, where the distance between the excretory opening and the urinary opening is close [4]. In most cases, Escherichia coli bacteria are the cause of infection, with a rate between 80 – 90% [5]. At the present time, treating urinary tract infections is somewhat difficult, this is due to the development of antibiotic-resistant bacterial strains, Therefore, the patient must be given increased doses of antibiotics of different types and on a wider spectrum, which leads to more resistance [6]. Until now, the GUE method and Urine culture remains the prevailing methods in laboratories for diagnosing UTI [7], But it does not give accurate and certain results. The reason for this

is because the GUI cannot explain the cause and location of the infection in the urinary system. Moreover, a large percentage of the results of this test are due and depend on the laboratory lark in conducting the analysis and his experience also in microscopic diagnosis [8]. As for the test Culture may give negative results if the patient was taking antibiotics before the examination [9]. World Health Organization (WHO) studies have shown that the infection rate increases among girls at school age [10]. As for uncircumcised boys, they are 10-12 times more likely to suffer from urinary tract infections compared to circumcised boys [11]. The reason is that uncircumcised boys are more susceptible to urinary tract infections because foreskin it is a home for microbes to accumulate [12].

2 Methods of diagnostic

2.1 Clinical diagnosis

It is one of the types of examinations that the specialist performs in direct physical contact with the patient, looking for any visible signs on the patient that would give him an indication of a urinary tract infection [13]. In this type of test, many signs appear on patients that may be useful to the specialist doctor in diagnosing urinary tract infections, or there may be symptoms or clinical signs similar to diseases other than urinary tract infections (Table 1)

. In this case, the specialist doctor must be very accurate with the diagnosis and not rely solely on just one sign [14].

Table 1. Symptoms and symptoms similar to urinary tract infections.

Symptoms (Signs)	Similar Symptoms		
Dysuria	Prostatitis [15]		
	Interstitial cystitis [16],		
Bladder Pain	Bladder Wall Stiffness [17],		
	Bladder Cancer [18]		
	Polycystic ovary		
Loin pain	syndrome [19,20]		
	Appendicitis [21]		
Bloody Urine	Prostatic hypertrophy [15,22]		
Discharge from the	Testicular Inflammatory [23]		
Urinary Opening			
Fever	Infections in		
rever	general [<mark>24</mark>]		
	Iron, ferritin,		
Nausea	Hemoglobin deficiency or		
	H.pylori Infection [25]		
Dark Color Of Urine	Hepatitis [26]		
Danaita Of Haina	Diabetes Insipidus [27],		
Density Of Urine	Dehydration [28]		
	Increase protein		
Appearance Of Urine	levels [29],		
	Eclampsia [30]		
Smell Of Urine	Dehydration [28]		
Frequent Urination	Diabetes mellitus [31]		

2.2 General urine examination

It is one of the most common types of examinations for urinary tract performed in medical laboratories [32]. Through it, we know whether the patient is suffering from urinary tract infections, in addition to knowing the chemicals materials in the urine, in addition to detecting the presence of solid materials such as crystals [33]. The GUE is divided into three main parts: physical examination which depends on sight and through which it can be known and recorded Color, Odor and Aspect [34]. Chemical examination this is done through a strip containing squares for the reactant on which the result appears after dipping it in urine, it is compared with reference Range, which includes Sp. Gravity, Reaction (PH), Protein, Glucose, Ketones, Nitrite, Bilirubin, Urobilinogen, Leucocytes and Blood (Fig.1). These tests can give an indication of other systemic disorders such as kidney and liver functions [35].

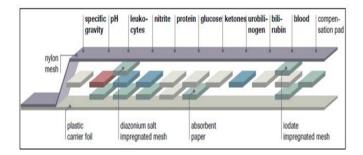


Fig. 1. A cross-section of a urine strip showing the test areas. (Source: Roche Diagnostics USA).

Microscopic examination this part depends on the microscopic diagnosis and the examiner's skill and experience in determining what appears on the slide after treating the sample in a centrifuge and examining the sediment includes Pus Cells, RBCs, Epithelial Cells, Mucus, Bacteria, Crystals, Casts and Others (Table 2, Fig.2) [36,37].

Table 2. GUE parts and reference range.

Physical Examination	Reference Range				
Color	Yellow				
Odor	Aromatic				
Aspect	Clear				
Sp. Gravity	1000				
Chemical Examination					
Reaction	Acidic				
Protein	Absent				
Glucose	Absent				
Ketones	Absent				
Nitrite	Absent				
Bilirubin	Absent				
Urobilinogen	Absent				
Leucocytes	Absent				
Blood	Absent				
Microscopic Examination					
Pus Cells	0 - 1 / HPF				
RBCs	1 - 2 / HPF				
Epithelial Cells	Absent				
Mucus	Absent				
Bacteria	Absent				
Crystals	Absent				
Casts	Absent				
Others	Absent				

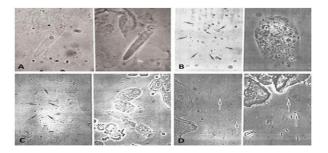


Fig. 2. Some models seen under a microscope A. Hyaline casts, B. A cast containing fatty droplets, C. Renal tubular epithelial cells, D. Squamous epithelial cells and bacteria [38].

2.3 Urine culture

Urine culture is one of the most important and common methods for diagnosing microbes in the urinary tract and testing their sensitivity to various antibiotics [39]. However, all urine samples were cultured without any clinical signs supporting the presence of urinary tract infections it can lead to unnecessary testing that increases cost and burden on the patient [40], therefore, it is necessary to confirm clinically whether a urinary tract infection is present before performing a urine culture. The urine is cultured on culture media, and then the bacteria that grow on the differential media are diagnosed, bacterial diagnosis is carried out by microscopy in addition to biochemical tests [41]. The sensitivity of isolated bacteria to various antibiotics is usually measured by the Kirby-Bauer method (disc diffusion method), which is the most widely used method, while Miller-Hinton medium has been used as a nutrient-rich medium for bacterial growth [41,42]. One of the advantages of this type of testing is prescribing the appropriate antibiotic for the bacteria that has been diagnosed and avoiding prescribing inappropriate antibiotics for the patient. This in turn reduces the cost and keeps the patient's life away from the risk of wrong treatments [43].

2.4 Ultrasound

It is one of the types of diagnosis of urinary tract infections for all ages and genders, as it can be used in newborns and adults alike [44]. This technique has many advantages, including non-surgical intervention, easy to use, can be applied to newborn patients and it is easy to replicate [45]. It is possible to diagnose infections in the lower part of the urinary tract, such as cystitis, urethritis, or ureteritis. It is also possible to diagnose infections in the upper part of the urinary tract, such as kidney pelvis infections or nephronitis, using this technique [46]. It is also possible to use this technology to monitor the severity of infections before and after the patient takes treatments, that is, to follow the condition and development of inflammation [47].

2.5 Endoscope

It is one of the techniques used in diagnosing and treating urinary tract infections [48]. It is a tube that contains a small high-resolution camera at the end, which is inserted carefully and slowly through the urinary opening after placing a local anesthetic in the area. It can be used in hospitals in operating rooms during general anesthesia [49]. An endoscope is inserted through the urinary opening to detect infections, cancers, stones, or eradication tumors in any parts of the lower and upper urinary system [50]. Artificial intelligence has begun to enter the medical field, specifically in endoscopy, to assist the doctor in treatment, diagnosis, and performing tasks in surgical operations [51]. There are two main types of endoscope: the rigid endoscope [52], which is usually used to examine the bladder, and the flexible endoscope, which is used for the ureters and kidneys [53].

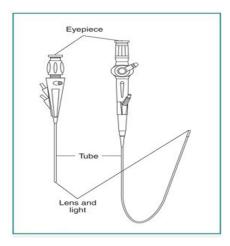


Fig. 3. Rigid endoscope and flexible endoscope. (Source: National Institute of Diabetes and Digestive and Kidney Diseases).

2.6 Biosensing

Due to the developments in the field of medicine, there has been a need for modern diagnostic techniques that provide less effort and less cost for patients and workers in hospitals and medical laboratories, therefore, devices for analyzing samples electrochemically were developed [54]. The biosensor works in a simple way to analyze urine samples to search, detect and analyze any information about their composition and components by converting biological responses into electrical signals [55]. Biosensors are one of the types of new and innovative biotechnology that are mainly used to detect cellular substrates [56], which include proteins, enzymes, hemoglobin (Hb), various chemicals such as toxins, and various pathogens [57]. Commercial biosensing devices were first sold on the market in 1970, and seven years later, the Food and Drug Administration (FDA) gave the green light to apply this test to test the final product on clinical samples to detect

pathogens [58].

2.7 Nanotechnology

Nanotechnology is considered one of the modern techniques in diagnosing and treating many diseases, including urinary tract infections, its works at the nanoscale level of materials [59]. Due to the modernity and development of this technique and its ability to diagnose many substances such as proteins and nucleic acids, in addition to its low cost and very low error rate, this technique is one of the best techniques used in diagnosing and treating urinary tract infections [60]. The principle of action of nanoparticles depends on their small size and very high sensitivity, as these particles are coated with artificial antibodies so that they only adhere to biological particles, DNA, proteins, or other biological particles in the human body, and they cannot adhere to other biological particles, and when these bind Proteins or other nanobodies coated in their conductivity will change, and thus this nanobiosensor can be used to detect a large number of diseases in their early stages. One of these materials used in the process of diagnosing urinary tract infections is copper NPs, and the reason for its use is due to its oxidation and reduction property, where particle diameters from 7 to 12 nanometers are usually using, where several types of bacteria can be diagnosed, such as: Escherichia coli, Klebsiella pnemoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus, Proteus mirabilis [61]. Other substances that have the ability to diagnose urinary tract infections are silver [62], zinc oxide [63], and selenium [64].

2.8 Artificial intelligence (AI)

It is considered one of the types of advanced and modern scientific technology that has been widely used in many fields, including medicine, especially in the field of early diagnosis [65]. Artificial intelligence has the potential to provide results in the medical system in terms of diagnosing diseases [66]. In turn, artificial intelligence provides good tools that can be applied in the field of medical care to detect data accurately, and this data can then be translated and interpreted by specialized doctors to identify and diagnose clinical problems [67]. Many recent studies and reviews have primarily reported on the performance of AI at the diagnostic level, such as identifying and diagnosing diseases [68]. However, many of these studies are about developing and updating artificial intelligence programs and tools and their performance, but there is a noticeable lack of studies that address the role and impact of artificial intelligence used at the clinical level on patient safety.

3 Discussion

After presenting the most common methods of diagnosing urinary tract infections in hospitals and medical laboratories, now we can evaluate them and show the advantages and disadvantages of each method and give a point for each advantage. Therefore, we can compare and differentiate between them on the basis of completion time, patient comfort, cost, availability, accuracy in diagnosis, efficiency, Requires skills (Table 3).

If we want to compare the methods of diagnosing urinary tract infections in terms of time, we find that clinical diagnosis, GUE, and ultrasound diagnosis are among the fastest diagnostic methods because they do not require a complex techniques [69]. As for the comfort of the patient, we find that the patient is more comfortable when using clinical diagnosis because he only needs the patient to sit in front of the specialist doctor and the method of urine culture because it only requires bringing a urine sample to the laboratory and diagnosis using artificial intelligence and the nanotechnology method and diagnosis using ultrasound waves. Regarding cost, clinical diagnosis, GUE, and ultrasound are the least expensive techniques because they do not require the use of equipment. Regarding availability, clinical diagnosis, GUE, urine culture, and diagnosis using ultrasound are the most available techniques in hospitals and private clinics because they do not require special requirements in third world countries and developing countries [70]. As for the accuracy of the diagnosis, the clinical diagnosis cannot be completely relied upon due to the presence of symptoms similar to those of urinary tract infections as in (Table 1). As for the GUE, it cannot be completely reliable 100% because the genital tract is shared with the urinary tract in males. It is possible that infections may appear in the urine stream and under the microscope, but they are due to infections in the genital tract and not in the urinary tract. Also, we cannot rely on urine culture technology completely in diagnosis unless we provide it with an ideal environment, such as lack of pollution, taking the sample in a correct way, and a correct method of diagnosis in biochemical tests [71]. As for efficiency, all the techniques used in diagnosing urinary tract infections can be efficient, but the most efficient techniques of all are Nanotechnology, Biosensing, and Endoscope, because the error rate in them is very small. Regarding skill requirements, all of the techniques mentioned in this review require skilled people to complete or accomplish them, except for the diagnosis method and the artificial intelligence method, which leaves it to the artificial intelligence to do so [72].

	Time	Patient Comfort	Cost	Availability	Diagnostic accuracy	Efficiency	Requires skills	Total
Clinical Diagnosis	1	1	1	1	0.5	0.5	1	6
GUE	1	0.5	1	1	0.5	0.5	1	5.5
Urine Culture	0	1	0	1	0.5	0.5	1	4
AI	1	1	0	0	0.5	0.5	0	3
Nanotechnology	0	1	0	0	1	1	1	4
Biosensing	0	0	0	0	1	1	1	3
Endoscope	0	0	0	0	1	1	1	3
Ultrasound	1	1	1	1	0.5	0.5	1	6

Table 3. Compare the evaluation techniques used in the review.

4 Conclusion

This review can be a reference for doctors and laboratory workers to facilitate the process of comparing methods for diagnosing urinary tract infections. Due to the large number of cases of urinary tract infections in the world for both sexes and all ages, there is an urgent need for methods of diagnosing these infections and evaluate these methods, compare its, and know the advantages and disadvantages of all of these methods. In this review, I conclude that each type of technology used in diagnosing urinary tract infections has its advantages and disadvantages, but in general we can rely on diagnosis using nanotechnology, Biosensing, and Endoscope technology. Regardless of their disadvantages, they are more efficient and accurate in diagnosis than other technologies. It is recommended to use more than one method for diagnosis to reduce the error rate. It is also recommended to search for other new techniques that can combine the advantages of all the mentioned techniques, as they are low in cost and comfortable for the patient, the time for completion is short, and they are available in all health care settings and in all developing countries, third world countries, and developed countries alike, and their efficiency is high and the accuracy of their diagnosis is high.

Conflict of Interest: The author declare no conflict of interest.

Financing: The study was performed without external funding.

Ethical consideration: The study was approved by Al-Muthanna University, Al-Muthanna, Iraq.

REFERENCES

- [1] Öztürk R, Murt A. Epidemiology of urological infections: a global burden. World Journal of Urology. 2020;38(11):2669-79. Available from: 10.1007/s00345-019-03071-4. doi:10.1007/s00345-019-03071-4.
- [2] Foxman B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Disease-a-Month. 2003;49(2):53-70. doi:10.1067/mda.2003.7.

- [3] Kaur R, Kaur R. Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgraduate Medical Journal. 2021;97(1154):803-12. doi:10.1136/postgradmedj-2020-139090.
- [4] Foxman B. The epidemiology of urinary tract infection. Nature Reviews Urology. 2010;7(12):653-60. Available from: 10.1038/nrurol.2010.190. doi:10.1038/nrurol.2010.190.
- [5] Alhamadani YST. Study the Effectiveness of Ceftriaxone on Biofilm Formation by Different Strains of *E. coli* Isolated from Patients with Urinary Tract Infection. Muthanna Journal of Pure Science. 2022;9(1):1-11. doi:10.52113/2/09.01.2022/1-11.
- [6] Critchley IA, Cotroneo N, Pucci MJ, Mendes R. The burden of antimicrobial resistance among urinary tract isolates of *Escherichia coli* in the United States in 2017. PLoS One. 2019;14(12):1-11. Available from: 10.1371/journal.pone.0220265. doi:10.1371/journal.pone.0220265.
- [7] Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, et al. Urine is not sterile: Use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. Journal of Clinical Microbiology. 2014;52(3):871-6. doi:10.1128/JCM.02876-13.
- [8] Patel R, Polage CR, Dien Bard J, May L, Lee FM, Fabre V, et al. Envisioning Future Urinary Tract Infection Diagnostics. Clinical Infectious Diseases. 2022;74(7):1284-92. doi:10.1093/cid/ciab749.
- [9] Alhamadani YST, Hassan RN. Study of the Sensitivity to Different Antibiotics for Bacterial that Isolated from Vagina Used Kirby-Bauer Method. AIP Conference Proceedings. 2024:020004. doi:10.1063/5.0191732.
- [10] Organization WH, et al. Urinary tract infections in infants and children in developing countries in the context of IMCI. World Health Organization; 2005.
- [11] Wiswell TE. The prepuce, urinary tract infections, and the consequences. Pediatrics. 2000;105(4):860-2. doi:10.1542/peds.105.4.860.

- [12] Sneppen I, Thorup J. Foreskin morbidity in uncircumcised males. Pediatrics. 2016;137(5):e20154340. doi:10.1542/peds.2015-4340.
- [13] Boon HA, Van den Bruel A, Struyf T, Gillemot A, Bullens DMA, Verbakel JY. Clinical features for the diagnosis of pediatric urinary tract infections: Systematic review and meta-analysis. Annals of Family Medicine. 2021;19(5):437-46. doi:10.1370/AFM.2684.
- [14] Fahey T, Webb E, Montgomery AA, Heyderman RS. Clinical management of urinary tract infection in women: A prospective cohort study. Family Practice. 2003;20(1):1-6. doi:10.1093/fampra/20.1.1.
- [15] He H, Luo H, Xu H, Qian B, Zou X, Zhang G, et al. Preclinical models and evaluation criteria of prostatitis. Frontiers in Immunology. 2023 May;14:1-18. doi:10.3389/fimmu.2023.1183895.
- [16] Akiyama Y, Sonehara K, Maeda D, Katoh H, Naito T, Yamamoto K, et al. Genome-wide association study identifies risk loci within the major histocompatibility complex region for Hunner-type interstitial cystitis. Cell Reports Medicine. 2023;4(7):101114. doi:10.1016/j.xcrm.2023.101114.
- [17] Monteiro-Reis S, Ferreira JPS, Pires RA, Lobo J, Carvalho JA, Reis RL, et al. Bladder Wall Stiffness after Cystectomy in Bladder Cancer Patients: A Preliminary Study. Cancers (Basel). 2023;15(2):1-10. doi:10.3390/cancers15020359.
- [18] Tran L, Xiao JF, Agarwal N, Duex JE, Theodorescu D. Advances in bladder cancer biology and therapy. Nature Reviews Cancer. 2021;21(2):104-21. Available from: http://dx.doi.org/10.1038/s41568-020-00313-1. doi:10.1038/s41568-020-00313-1.
- [19] Annear NMP, Vanmassenhove J, Lameire N, Phillips ME, Eastwood JB. Loin pain haematuria syndrome 1967–2020: a review. Clinical Kidney Journal. 2024;17(3):1-12. Available from: https://doi.org/10.1093/ckj/sfae034.
- [20] Dema H, Videtič Paska A, Kouter K, Katrašnik M, Jensterle M, Janež A, et al. Effects of Mindfulness-Based Therapy on Clinical Symptoms and DNA Methylation in Patients with Polycystic Ovary Syndrome and High Metabolic Risk. Current Issues in Molecular Biology. 2023;45(4):2717-37. doi:10.3390/cimb45040178.
- [21] Cusumano JA, Hermenau M, Gaitanis M, Travis M, LaPlante KL, Tran TY, et al. Evaluation of post–flexible cystoscopy urinary tract infection rates. American Journal of Health-System Pharmacy. 2021;77(22):1852-8. doi:10.1093/AJHP/ZXAA270.
- [22] Tsunemori H, Sugimoto M. Effects of inflammatory prostatitis on the development and progression of benign prostatic hyperplasia: A literature review. In-

- ternational Journal of Urology. 2021;28(11):1086-92. doi:10.1111/iju.14644.
- [23] Dutta S, Sengupta P, Slama P, Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. International Journal of Molecular Sciences. 2021;22(18):1-20. doi:10.3390/ijms221810043.
- [24] Fernandes JF, Held J, Dorn M, Lalremruata A, Schaumburg F, Alabi A, et al. Causes of fever in Gabonese children: a cross-sectional hospital-based study. Scientific Reports. 2020;10(1):1-11. doi:10.1038/s41598-020-58204-2.
- [25] Alhamadani Y. Study The Relationship Between Helicobacter Pylori Infection And The Level Of Serum Ferritin Using Immunofluorescence Assay Method. Journal of Biomedicine and Biochemistry. 2024;3(1):22-5. doi:10.57238/jbb.2024.7273.1061.
- [26] Gholizadeh O, Akbarzadeh S, Ghazanfari Hashemi M, Gholami M, Amini P, Yekanipour Z, et al. Hepatitis A: Viral Structure, Classification, Life Cycle, Clinical Symptoms, Diagnosis Error, and Vaccination. Canadian Journal of Infectious Diseases and Medical Microbiology. 2023;2023:4263309. doi:10.1155/2023/4263309.
- [27] Mutter CM, Smith T, Menze O, Zakharia M, Nguyen H. Diabetes Insipidus: Pathogenesis, Diagnosis, and Clinical Management. Cureus. 2021;13(2):e13523. doi:10.7759/cureus.13523.
- [28] Levine AC, Gainey M, Qu K, Nasrin S, Sharif MBE, Noor SS, et al. A comparison of the NIRUDAK models and WHO algorithm for dehydration assessment in older children and adults with acute diarrhoea: a prospective, observational study. Lancet Global Health. 2023;11(11):e1725-33. doi:10.1016/S2214-109X(23)00403-5.
- [29] Aitekenov S, Gaipov A, Bukasov R. Review: Detection and quantification of proteins in human urine. Talanta. 2021;223:121718. doi:10.1016/j.talanta.2020.121718.
- [30] Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco RPV, et al. Pre-eclampsia. Nature Reviews Disease Primers. 2023;9(1):1-22. doi:10.1038/s41572-023-00417-6.
- [31] Xin C, Fan H, Xie J, Hu J, Sun X, Liu Q. Impact of Diabetes Mellitus on Lower Urinary Tract Symptoms in Benign Prostatic Hyperplasia Patients: A Meta-Analysis. Frontiers in Endocrinology (Lausanne). 2022;12:1-8.
- [32] Winkens RA, Leffers P, Trienekens TA, Stobberingh EE. The validity of urine examination for urinary tract infections in daily practice. Family Practice. 1995;12(3):290-3. doi:10.1093/fampra/12.3.290.

- [33] Abebayehu A. Urine test strip analysis, concentration range and its interpretations of the parameters. GSC Biological and Pharmaceutical Sciences. 2023;22(2):1-13. doi:10.30574/gscbps.2023.22.2.0091.
- [34] Roberts KB, Downs SM, Finnell SME, Hellerstein S, Shortliffe LD, Wald ER, et al. Urinary tract infection: Clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011;128(3):595-610. doi:10.1542/peds.2011-1330.
- [35] Ridley JW. Fundamentals of the study of Urine and body fluids. Fundamentals of the Study of Urine and Body Fluids; 2018.
- [36] Fogazzi GB, Delanghe J. Microscopic examination of urine sediment: Phase contrast versus bright field. Clinical Chemistry and Laboratory Medicine. 2018;487(July):168-73. doi:10.1016/j.cca.2018.09.036.
- [37] Tuncer T, Erkuş M, Çınar A, Ayyıldız H, Tuncer SA. Urine Dataset having eight particles classes. arXiv preprint arXiv:230209312. 2023. doi:10.48550/arXiv.2302.09312.
- [38] Brody L, Webster MC, Kark RM. Identification of Elements of Urinary Sediment With Phase-Contrast Microscopy: A Simple Method. Journal of the American Medical Association. 1968;206(8):1777-81. doi:10.1001/jama.1968.03150080057014.
- [39] Brubaker L, Chai TC, Horsley H, Khasriya R, Moreland RB, Wolfe AJ. Tarnished gold—the "standard" urine culture: reassessing the characteristics of a criterion standard for detecting urinary microbes. Frontiers in Urology. 2023;3(July):1-9. doi:10.3389/fruro.2023.1206046.
- [40] Ko DSC, Lukacz ES, Juster IA, Niecko T, Ashok A, Vollstedt AJ, et al. Real-World Evidence That a Novel Diagnostic Combining Molecular Testing With Pooled Antibiotic Susceptibility Testing is Associated With Reduced Infection Severity and Lower Cost Compared With Standard Urine Culture in Patients With Complicated or Persistent Urinary Tract Infections. JU Open Plus. 2023;1(5):1-9. doi:10.1097/ju9.0000000000000000055.
- [41] Alhamadani Y, Oudah A. Study of the Bacterial Sensitivity to different Antibiotics which are isolated from patients with UTI using Kirby-Bauer Method. Journal of Biomedicine and Biochemistry. 2022:1-5. doi:10.57238/jbb.2022.19387.
- [42] Sabee M, Awang M, Bustami Y, Hamid Z. Gentamicin loaded PLA microspheres susceptibility against Staphylococcus aureus and Escherichia coli by Kirby-Bauer and micro-dilution methods. AIP Conference Proceedings. 2020;2267(1):020032. doi:10.57238/jbb.2022.19387.

- [43] Schiller H, Young C, Schulze S, Tripepi M, Pohlschroder M. A Twist to the Kirby-Bauer Disk Diffusion Susceptibility Test: an Accessible Laboratory Experiment Comparing Haloferax volcanii and Escherichia coli Antibiotic Susceptibility to Highlight the Unique Cell Biology of Archaea. Journal of Microbiology and Biology Education. 2022;23(1):e00234-21. doi:10.1128/jmbe.00234-21.
- [44] Ucar AK, Kurugoglu S. Urinary Ultrasound and Other Imaging for Ureteropelvic Junction Type Hydronephrosis (UPJHN). Frontiers in Pediatrics. 2020;8(September):1-16. doi:10.3389/fped.2020.00546.
- [45] Lopes KR, Nicolussi AC. Advantages of bladder ultrasound in measuring urine volume in critically ill patients: an integrative review. Revista de Enfermagem. 2021;29:1-9. doi:10.12957/reuerj.2021.61972.
- [46] Keefe DT, Kim JK, Mackay E, Chua M, Van Mieghem T, Yadav P, et al. Predictive accuracy of prenatal ultrasound findings for lower urinary tract obstruction: A systematic review and Bayesian metanalysis. Prenatal Diagnosis. 2021;41(9):1039-48. doi:10.1002/pd.6025.
- [47] Palese A, Buchini S, Deroma L, Barbone F. The effectiveness of the ultrasound bladder scanner in reducing urinary tract infections: A meta-analysis. Journal of Clinical Nursing. 2010;19(21–22):2970-9. doi:10.1111/j.1365-2702.2010.03281.x.
- [48] Yoshida T, Ohe C, Nakamoto T, Kinoshita H. Learning from the past and present to change the future: Endoscopic management of upper urinary tract urothelial carcinoma. International Journal of Urology. 2023;30(8):634-47. doi:10.1111/iju.15208.
- [49] Gleason JL. Cystoscopy and other urogynecologic procedures. Obstetrics and Gynecology Clinics of North America. 2013;40(4):773-85. doi:10.1016/j.ogc.2013.09.003.
- [50] Ikeda A, Nosato H, Kochi Y, Kojima T, Kawai K, Sakanashi H, et al. Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence. Journal of Endourology. 2020;34(3):352-8. doi:10.1089/end.2019.0509.
- [51] Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, et al. Artificial Intelligence–Assisted Endoscopic Diagnosis of Early Upper Gastrointestinal Cancer: A Systematic Review and Meta-Analysis. Frontiers in Oncology. 2022;12:1-12. doi:10.3389/fonc.2022.855175.
- [52] Cadena Aguirre DP, de Moura DTH, Hirsch B, Peixoto de Oliveira GH, Kum AST, Mahmood S, et al. Flexible Endoscopic Versus Rigid Endoscopy or Surgery for the Management of Zenker's Diverticulum: A Systematic Review and Meta-Analysis. Cureus. 2023;15(8):e43021. doi:10.7759/cureus.43021.

- [53] Reilink R, Stramigioli S, Misra S. Image-based flexible endoscope steering. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010) - Conference Proceedings; 2010. p. 2339-44. doi:10.1109/IROS.2010.5652248.
- [54] Chandra H, Singh C, Kumari P, Yadav S, Mishra AP, Laishevtcev A, et al. Promising roles of alternative medicine and plant-based nanotechnology as remedies for urinary tract infections. Molecules. 2020;25(23):5593. doi:10.3390/molecules25235593.
- [55] Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors. 2018;8(2):1-34. doi:10.3390/bios8020035.
- [56] Kumar MS, Ghosh S, Nayak S, Das AP. Recent advances in biosensor based diagnosis of urinary tract infection. Biosensors and Bioelectronics. 2016;80:497-510. doi:10.1016/j.bios.2016.02.023.
- [57] Kim K, Park C, Kwon D, Kim D, Meyyappan M, Jeon S, et al. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosensors and Bioelectronics. 2016;77:695-701. doi:10.1016/j.bios.2015.10.008.
- [58] Das AP, Kumar PS, Swain S. Recent advances in biosensor based endotoxin detection. Biosensors and Bioelectronics. 2014;51:62-75. doi:10.1016/j.bios.2013.07.020.
- [59] Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnology Advances. 2018;36(7):1984-2016. doi:10.1016/j.biotechadv.2018.08.008.
- [60] Monošik R, Stred'ansky M, Šturdík E. Application of electrochemical biosensors in clinical diagnosis. Journal of Clinical Laboratory Analysis. 2012;26(1):22-34. doi:10.1002/jcla.20500.
- [61] Al-Enizi AM, Ahamad T, Al-hajji AB, Ahmed J, Chaudhary AA, Alshehri SM. Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens. International Journal of Biological Macromolecules. 2018;109:803-9. doi:10.1016/j.ijbiomac.2017.11.057.
- [62] Paralikar P, Ingle AP, Tiwari V, Golinska P, Dahm H, Rai M. Evaluation of antibacterial efficacy of sulfur nanoparticles alone and in combination with antibiotics against multidrug-resistant uropathogenic bacteria. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering. 2019;54(5):381-90. doi:10.1080/10934529.2018.1558892.
- [63] Santhoshkumar J, Kumar SV, Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf

- extract against urinary tract infection pathogen. Resources, Conservation and Recycling Technology. 2017;3(4):459-65. doi:10.1016/j.reffit.2017.05.001.
- [64] El-Sayyad GS, El-Bastawisy HS, Gobara M, El-Batal AI. Gentamicin-Assisted Mycogenic Selenium Nanoparticles Synthesized Under Gamma Irradiation for Robust Reluctance of Resistant Urinary Tract Infection-Causing Pathogens. Biological Trace Element Research. 2020;195(1):323-42. doi:10.1007/s12011-019-01842-z.
- [65] Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: Systematic literature review. JMIR Medical Informatics. 2020;8(7):1-30. doi:10.2196/18599.
- [66] Awaysheh A, Wilcke J, Elvinger F, Rees L, Fan W, Zimmerman KL. Review of Medical Decision Support and Machine-Learning Methods. Veterinary Pathology. 2019;56(4):512-25. doi:10.1177/0300985819829524.
- [67] Bhardwaj R, Nambiar AR, Dutta D. A Study of Machine Learning in Healthcare. In: Proceedings of the International Conference on Computer Software and Applications. vol. 2; 2017. p. 236-41. doi:10.1109/COMPSAC.2017.164.
- [68] Sanchez-Morillo D, Fernandez-Granero MA, Leon-Jimenez A. Use of predictive algorithms inhome monitoring of chronic obstructive pulmonary disease and asthma: A systematic review. Chronic Respiratory Disease. 2016;13(3):264-83. doi:10.1177/1479972316642365.
- [69] Holm A, Siersma V, Cordoba GC. Diagnosis of urinary tract infection based on symptoms: How are likelihood ratios affected by age? a diagnostic accuracy study. BMJ Open. 2021;11(1):1-7. doi:10.1136/bmjopen-2020-039871.
- [70] Batirel A, Regmi SK, Singh P, Mert A, Konety BR, Kumar R. Urological infections in the developing world: an increasing problem in developed countries. World Journal of Urology. 2020;38(11):2681-91. doi:10.1007/s00345-020-03120-3.
- [71] Xu R, Deebel N, Casals R, Dutta R, Mirzazadeh M. A new gold rush: A review of current and developing diagnostic tools for urinary tract infections. Diagnostics. 2021;11(3):479. doi:10.3390/diagnostics11030479.
- [72] Goździkiewicz N, Zwolińska D, Polak-Jonkisz D. The Use of Artificial Intelligence Algorithms in the Diagnosis of Urinary Tract Infections—A Literature Review. Journal of Clinical Medicine. 2022;11(10):2734. doi:10.3390/jcm11102734.

How to cite this article

Alhamadani Y.S.; Biotechnology of the Diagnosis Urinary Tract Infections: Review. Trends in Pharmaceutical Biotechnology (TPB). 2024;2(2):21-29. doi: 10.57238/tpb.2024.153196.1017

